a2 United States Patent

Jiang et al.

US009465674B2

US 9,465,674 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

(58)

DIRECT MEMORY (DMA) BASED ACCESS
TO A DEVICE ON A REMOTE MACHINE
USING STUB DRIVER AND BY
SYNCHRONIZING THE DMA BUFFER

Inventors: Zhefu Jiang, Beijing (CN); Shoumeng
Yan, Beijing (CN); Gansha Wu,
Beijing (CN)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 332 days.

Appl. No.: 13/995,462

PCT Filed: Mar. 30, 2012

PCT No.: PCT/CN2012/073314

§ 371 (e)(D),

(2), (4) Date: Sep. 13, 2013

PCT Pub. No.: W02013/143121
PCT Pub. Date: Oct. 3, 2013

Prior Publication Data

US 2013/0346978 Al Dec. 26, 2013
Int. CL.
GO6F 9/455 (2006.01)
GO6F 9/54 (2006.01)
(Continued)
U.S. CL
CPCcccue. GO6F 9/54 (2013.01); GOGF 9/45533

(2013.01); GOGF 9/45558 (2013.01); GO6F
9/5077 (2013.01); GO6F 15/17331 (2013.01);
GO6F 12/1081 (2013.01); GOGF 13/28
(2013.01); GOGF 2009/45575 (2013.01); GO6F
2009/45579 (2013.01)
Field of Classification Search
None
See application file for complete search history.

200~

(56) References Cited

U.S. PATENT DOCUMENTS

9/2011 Hobbs et al.
5/2005 Baumberger et al.

(Continued)

8,028,040 Bl
2005/0108440 Al

FOREIGN PATENT DOCUMENTS

CN 101064629 A 10/2007
CN 101425046 A 5/2009
CN 102023960 A 4/2011

OTHER PUBLICATIONS

International Preliminary Report on Patentability mailed Oct. 9,
2014 for International Application No. PCT/CN2012/073314, 9
pages.

(Continued)

Primary Examiner — Abu Ghaffari
(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt, P.C.

(57) ABSTRACT

Hosting, by a virtual machine manager of a local machine,
a virtual machine having a device driver. The method may
include obtaining, by the virtual machine manager, from a
stub driver on the remote machine, information about the I/O
device on the remote machine. The I/O device on the remote
machine may be bound to the stub driver on the remote
machine. The method may include instantiating, by the
virtual machine manager, a virtual [/O device on the local
machine corresponding to the /O device on the remote
machine. The method may include collaborating, by the
virtual machine manager, with the stub driver on the remote
machine to effectuate a real access to the I/O device on the
remote machine for an access to the virtual I/O device by the
device driver on behalf of a program on the local machine.
Other embodiments may be described and claimed.

21 Claims, 5 Drawing Sheets

Locai Machine 202

Virtual Machine 112

05210 Virtual
ey Device
oriver 114
DMA 212
218

=
2
3
B8
<

B

Remote Machine 208

I Stub Driver 110 J

[l

Communication Agent 204

| Agent 214 |

US 9,465,674 B2
Page 2

(51) Int. CL
GOGF 9/50
GOGF 15/173
GOGF 12/10
GOGF 13/28

(56)

(2006.01)
(2006.01)
(2016.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

2006/0143311 Al1*

2007/0083862 Al*
2007/0180449 Al*
2009/0006296 Al*

2009/0024817 Al*

6/2006

4/2007
8/2007
1/2009

1/2009

Madukkarumukumana GOG6F 13/28

710/1

........ GO6F 12/1081
718/1

Croft ..o, GOG6F 3/1415
718/1

Chenooovevins GOG6F 15/163
706/42

...................... GO6F 13/28
711/170

2010/0023626 Al* 1/2010 Hussain ... HO4L 49/90
709/227

2010/0077019 Al 3/2010 Holk et al.
2010/0306479 Al* 12/2010 Ezzat ... GOG6F 15/167
711/147
2012/0110573 Al* 5/2012 Prashanth ... GOG6F 9/465
718/1
2013/0138758 Al* 52013 Cohen HO4L 29/08549
709/212

OTHER PUBLICATIONS

International Search Report and Written Opinion mailed Jan. 17,
2013 for International Application No. PCT/CN2012/073314, 14
pages.

Extended European Search Report mailed Nov. 11, 2015 for Euro-
pean Patent Application No. 12872361.6, 8 pages.

David Rusling, “Chapter 8: Device Drives,” Jan. 1, 1999, Retrieved
from tldp.org/LDP/tlk/dd/drivers html.

* cited by examiner

US 9,465,674 B2

Sheet 1 of 5

Oct. 11, 2016

U.S. Patent

I 'O14

“

|

|

|

|

|

— i

L1 18AuQg Mg ﬂ "

I

» 901 |

|

8Ll o1l “
ao1naQ a01neQq X
ol 80IN0SaY "
|

f

|

|

|

1

301 SUIYSEW Sj0Wway |

f

S

s
—p

Vit
solneq

[enUIA

TT SUIYOB [enuip

201 auyoep |edo

US 9,465,674 B2

Sheet 2 of 5

Oct. 11, 2016

U.S. Patent

vi¢ Wweby uoiediunwwon

i

11 J8AUQ 9IS

sli
solneQ

o/l

ﬂ

* \

Y

194
so1neqg
8oinosay

NNIOI X
Y v

0cc
Aowspy

8ic
VIAQ

80¢ 2UIyoep aj0way

¢ 9Old

901

¥0¢ Jueby uonesuntuwo)

A

90C

P
ao1neQ

[enUIA

[4%4
1BAIQ
201A9Q

ol

Kiowdp

o1
vYINd

ZIT auiyoel (eniip

¢0¢ dDUiyoe [edoT]

U.S. Patent Oct. 11, 2016 Sheet 3 of 5 US 9,465,674 B2

Hosting and managing a virtual machine on a local —— 302
machine

l

Obtaining information about an I/O device on a remote — 304
machine from a stub driver on the remote machine

306
Instantiating a virtual I/O device on the local machine [~

Coliaborating with the stub driver to effectuate a real
access to the 1/0O device for an access to the virtual I/O
device

FIG. 3

U.S. Patent Oct. 11, 2016 Sheet 4 of 5 US 9,465,674 B2

Bind the stub driver to an 1/O device

l

Detect additional I/O devices coupled to the I/O device

Obtain configuration information for the additional /O | 406
devices

Collaborate with a virtual machine manager of a second |~ 408
machine to effectuate a real access to I/O device by the
second machine

FIG. 4

U.S. Patent Oct. 11, 2016 Sheet 5 of 5 US 9,465,674 B2

N CAMERA

N
3 T Ry
3 cizxktizxt\\\:‘:b%@:\‘%&}\ S

o

COMBUNIGATION
CHIF
506
PROCESSDR

504 f——
COMMUNICATION
CHiIP ;

=06

DRAM | CoRAm 814

i GHAPHICS
AME D P

rent 8540

£8 PERSISTENY
STORAGE
S 2

SPEAKER % TOUCHSCREEN
B CHAPLARY
&3¢ o 518
Rt

RATTERY
¥y
532

T
- L

— R
'\\\"\\V N RS L EWE R % 3 \\\%&\
R SRaianad N

.

FIG. &

US 9,465,674 B2

1

DIRECT MEMORY (DMA) BASED ACCESS
TO A DEVICE ON A REMOTE MACHINE
USING STUB DRIVER AND BY
SYNCHRONIZING THE DMA BUFFER

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a national phase entry under 35
U.S.C. §371 of International Application No. PCT/CN2012/
073314, filed Mar. 30, 2012, entitled “ACCESSING A
DEVICE ON A REMOTE MACHINE”, which designated,
among the various States, the United States of America. The
Specification of the PCT/CN2012/073314 Application is
hereby incorporated by reference.

TECHNICAL FIELD

The present disclosure relates generally to the technical
field of computing system. More specifically, the present
disclosure relates accessing a device on a remote machine.

BACKGROUND INFORMATION

The background description provided herein is for the
purpose of generally presenting the context of the disclo-
sure. Unless otherwise indicated herein, the materials
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion
in this section.

Today, many users use multiple computing devices, such
as tablets, smart phones, and personal computers. However,
the current-generation computing devices do not enable a
user to move seamlessly among the devices, e.g., between a
laptop, smart phone, tablet or even car infotainment system.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings in which like reference numerals
refer to similar elements.

FIG. 1 is a block diagram of a computing continuum
suitable for use to practice various embodiments of the
present disclosure.

FIG. 2 is a block diagram of a computing continuum,
according to various embodiments of the present disclosure.

FIG. 3 is a flow diagram of an access method at local
computing machine side, according to various embodiments
of the present disclosure.

FIG. 4 is a flow diagram of an access method at remote
computing machine side, according to various embodiments
of the present disclosure.

FIG. 5 is a block diagram of a computing machine
incorporated with various embodiments of the present dis-
closure.

DESCRIPTION OF THE EMBODIMENTS

Embodiments of the present disclosure may relate to
accessing a device on a remote machine. To overcome issues
associated with sharing resources between a local machine
and a remote machine, a virtual machine manager (VMM)
of the local machine may be configured to collaborate with
a stub driver of the remote machine. The collaboration of the
VMM with the stub driver may enable seamless access of a
device on the remote machine by the local machine.

10

15

20

25

30

35

40

45

50

55

60

65

2

Advantageously, the systems and methods disclosed
herein may enable hardware independent and software trans-
parent approaches to accessing devices on remote machines
from local machines.

Various aspects of the illustrative embodiments will be
described using terms commonly employed by those skilled
in the art to convey the substance of their work to others
skilled in the art. However, it will be apparent to those
skilled in the art that some alternate embodiments may be
practiced using with portions of the described aspects. For
purposes of explanation, specific numbers, materials, and
configurations are set forth in order to provide a thorough
understanding of the illustrative embodiments. However, it
will be apparent to one skilled in the art that alternate
embodiments may be practiced without the specific details.
In other instances, well-known features are omitted or
simplified in order to not obscure the illustrative embodi-
ments.

Further, various operations will be described as multiple
discrete operations, in turn, in a manner that is most helpful
in understanding the illustrative embodiments; however, the
order of description should not be construed as to imply that
these operations are necessarily order dependent. In particu-
lar, these operations need not be performed in the order of
presentation.

The phrase “in one embodiment” is used repeatedly. The
phrase generally does not refer to the same embodiment;
however, it may. The terms “comprising,” “having,” and
“including” are synonymous, unless the context dictates
otherwise. The phrase “A/B” means “A or B”. The phrase
“A and/or B” means “(A), (B), or (A and B)”. The phrase “at
least one of A, B and C” means “(A), (B), (C), (A and B),
(A and C), (B and C) or (A, B and C)”. The phrase “(A) B”
means “(B) or (A B)”, that is, A is optional.

FIG. 1 illustrates a computing continuum 100 suitable for
practicing embodiments of the present disclosure. Comput-
ing continuum 100 may include a local machine 102 running
a virtual machine manager (VMM) 104 that may be coupled
by a communication channel 106 to a remote machine 108
running a stub driver 110. Computing continuum 100 may
provide a hardware independent and software transparent
solution to enable local machine 102 to access one or more
devices on remote machine 108 via communication channel
106. In particular, VMM 104 may communicate with stub
driver 110 to transmit and receive instructions and/or other
information for one or more devices that may be on remote
machine 108. The communication channel 106 may be a
channel of any one of any number of wired or wireless
communication technologies, such as universal serial bus
(USB), Ethernet, Bluetooth®, Wi-Fi®, or the like.

The term “compute continuum” as used herein refers to a
federation or association of multiple computing machines,
such as tablets, smart phones, laptops, desktops, car info-
tainment systems, and so forth, with seamless access of
devices on one or more (or all) machines. While for ease of
understanding, computing continuum 100 is illustrated with
one local machine 102 and one remote machine 108, the
present disclosure is not so limited. As it will be appreciated
from the description to follow, the present disclosure may be
practiced with computing continuum of two or more com-
puting machines. Further, a local machine accessing a
remote machine in one access scenario, may itself be a
remote machine when accessed, in another access scenario.

As used herein, hardware independency may mean that
the approach enables access to any kind of remote resources,
e.g. resource devices or 1/O devices, attached to any type of
bus. As used herein, software transparency may mean that

US 9,465,674 B2

3

the disclosed approaches may be used with operating sys-
tems, device drivers, and upper-level applications without
special modifications to the operating systems, device driv-
ers, or upper-level applications.

Local machine 102 may be any one of a number of
computing devices. For example, local machine 102 may be
a personal computer, a tablet, a smart phone, a personal
digital assistant, a desktop, a laptop, a game console, or other
similar computing device. Local machine 102 may run a full
software stack including an operating system, device driv-
ers, and applications. Local machine 102 may run one or
more applications that may benefit from being able to access
one or more devices or resources located on remote machine
108. For example, local machine 102 may run a graphics
intensive application which may benefit from access to a
graphical processing unit (GPU) that may be on remote
machine 108. As another example, local machine 102 may
execute a network-based application that may benefit from
access to a network interface device on remote machine 108.
According to various embodiments, local machine 102 may
access one or more devices on remote machine 108 by
running VMM 104 incorporated with the teachings of the
present disclosure.

VMM 104 may be configured to manage input/output
(I/O) data, device drivers, virtual machines, and/or operating
systems on local machine 102. The VMM may either be
purely software-based or purely hardware-based or a mix-
ture of both. In embodiments, VMM 104 may be configured
to enable an OS, e.g., guest OS, to transparently access one
or more remote devices on remote machine 108. VMM 104
(in cooperation with stub driver 110 of remote machine 108)
may be configured to enable one or more applications on
local machine 102 to access one or more devices of remote
machine 108. For example, VMM 104 may host virtual
machine 112, which may run one or more operating systems,
device drivers, and applications for local machine 102.
VMM 104 may also initiate or set up virtual device 114 to
facilitate access to one or more devices of remote machine
108 for use by virtual machine 112 or for use by device
drivers or applications executed by virtual machine 112. In
embodiments, virtual device 114 may provide, a guest OS
running on virtual machine 112, the illusion that the guest
OS is accessing a real device on local machine 102.

VMM 104 may configure virtual device 114 to emulate a
resource device 116 or an [/O device 118 (remote devices
116, 118), according to various embodiments. In particular,
VMM 104 may configure virtual device 114 to include, or
have access to, /O space information, direct memory access
(DMA) information, and/or interrupt information related to
remote devices 116, 118. According to one embodiment,
VMM 104 may configure several instances of virtual device
114 to concurrently emulate both remote devices 116, 118
and/or other remote devices on remote machine 108. By
configuring virtual device 114 to emulate remote devices
116, 118, VMM 104 may enable virtual machine 112 to
access virtual device 114 as if one or more of remote devices
116, 118 were installed on local machine 102, enabling local
machine 102 and remote machine 104 to form a computing
continuum.

VMM 104 may configure virtual device 114 to emulate
remote devices 116, 118 by collaborating with stub driver
110. In other words, VMM 104 may selectively and/or
periodically transfer data, instructions, and/or other infor-
mation to and from stub driver 110 in response to predefined
events or tasks. For example, to initialize virtual device 114,
VMM 104 may request 1/O configuration information from
stub driver 110 for remote devices 116, 118 located on

5

10

15

20

25

30

35

40

45

50

55

60

65

4

remote machine 108 to facilitate I/O address space-based
access of the remote devices. On receiving the response
containing the requested 1/O configuration information for
remote devices 116, 118, VMM 104 and/or virtual machine
112 may choose one or more of remote devices 116, 118 to
emulate with virtual device 114. In particular, VMM 104
may first select which one of remote devices 116, 118 to
import, then VMM 104 may send a request in order to
receive configuration information of the selected device. As
another example of collaborating, VMM 104 may share,
with stub driver 110, direct memory access (DMA)-based
information that is associated with virtual device 114 and the
corresponding one of remote devices 116, 118. As another
example of collaborating, VMM 104 may be configured to
receive interrupts or interrupt related information from stub
driver 110 that may be associated with remote devices 116,
118.

In embodiments, resource device 116 may be a number of
resource devices of remote machine 108. For example,
resource device 116 may be a graphical processing unit
(GPU), and VMM 104 may configure virtual device 114 to
associate with local shadow copies of I/O space information,
interrupt handling, and buffer operations of the GPU.

In embodiments, [/O device 118 may be any one of a
number of I/O devices included on remote machine 108. For
example, 1/O device 118 may be a touch screen interface, a
global positioning system (GPS) unit, a network interface
card, a display port, a communication port, one or more
sensors, one or more communication devices, or the like.

Remote machine 108 may be configured to enable stub
driver 110 to obtain instructions, data, or other information
from one or more devices on remote machine 108 to
facilitate access to the one or more devices by local machine
102. For example, remote machine 108 may bind stub driver
110 to resource device 116 or /O device 118. Binding stub
driver 110 to resource device 116 or I/O device 118 may
enable stub driver 110 to access communication and/or data
buses on remote machine 108. Binding stub driver 110 to
resource device 116 or I/O device 118 may enable stub
driver 110 to provide data or instructions directly to resource
device 116 or I/O device 118. According to various embodi-
ments, stub driver 110 may bind to all I/O devices of remote
machine 108 to be exported to the local machine 102. In
embodiments, remote machine 108 may bind stub driver 110
to an I/O device to facilitate routing of interrupts and/or I/O
space access of resource device 116 or I/O device 118 to
local machine 102. According to other embodiments, remote
machine 108 may bind stub driver 110 to resource device
116 or 1/O device 118 to facilitate routing /O space infor-
mation and/or DMA-related information to local machine
102.

In summary, the VMM 104 may collaborate with stub
driver 110 to enable virtual device 114 to emulate remote
devices 116, 118. Advantageously, VMM 104 may configure
virtual device 114 to interface with virtual machine 112 or
device drivers and/or applications run by virtual machine
112 as if virtual device 114 were resource device 116 or I/O
device 118 installed on local machine 102. Accordingly,
VMM 104 may enable hardware independent and software
transparent access to a remote device from local machine
102. Advantageously, stub driver 110 may operably interface
with remote devices 116, 118 to obtain configuration infor-
mation, to update DMA information, and/or to handle inter-
rupt processing for remote devices 116, 118. These actions
may be performed by stub driver 110 without redesign of, or
permanent modification to, remote devices 116, 118.
Accordingly, stub driver 110 may enable hardware indepen-

US 9,465,674 B2

5

dent and software transparent access to remote devices 116,
118, according to various embodiments.

FIG. 2 shows a computing continuum 200 configured to
enable local machine 202 to access remote devices 116, 118
of remote machine 208, according to embodiments of the
disclosure.

Local machine 202 may include many features similar to
local machine 102 and may be configured to effectuate a real
access of remote devices 116, 118 by enabling VMM 104 to
collaborate with stub driver 110. Local machine 202 may
include a communication agent 204, a memory 206, and
may run an operating system (OS) 210 and a device driver
212 inside a virtual machine 112.

Communication agent 204 may be configured to commu-
nicate with a communication agent 214 via communication
channel 106. Communication agent 204 and communication
agent 214 may each be configured to establish a wired or
wireless connection between local machine 202 and remote
machine 208. In embodiments, communication agent 204
and communication agent 214 are configured to establish
communication channel 106 via one of a universal serial bus
(USB) protocol, an Institute of Electrical and Electronics
Engineers (IEEE) 802.1x wireless protocol, or the like. In
embodiments, VMM 104 and stub driver 110 may use
communication agent 204 and communication agent 214 to
exchange data, instructions, interrupts, or other information
related to /O space configurations, DMA buffers, and inter-
rupt handling.

Memory 206 may be coupled to VMM 104 and may be
configured to {facilitate various types of collaboration
between VMM 104 and stub driver 110. According to
various embodiments, memory 206 may refer to general
physical address space, such as [/O address space and RAM
address space.

In embodiments, memory 206 may be configured to
support a setup phase of the I/O space for remote devices
116, 118. Device driver 212 may access an I/O space of an
1/0 device through port 1/0, or MMIO (memory mapped
1/0). To input or output to a remote device, the [/O address
space of a remote device may be locally shadowed in
memory 206 to provide OS 210 and device driver 212 with
a transparent illusion that one of remote devices 116, 118 is
installed on local machine 202. Then, to input or output to
one of remote devices 116, 118, /O operations may be
redirected to the remote machine 208 through communica-
tion agents 204 and 214. In embodiments, VMM 104 may
configure memory 206 to support the setup phase of /O
configuration space for remote devices 116, 118. In particu-
lar, VMM 104 may shadow the 1/O configuration space of
remote devices 116, 118 in portions of memory 206 allo-
cated for use by virtual machine 112. Then a base address
register of /O device 118, for example, may be exposed
directly or exposed after some translation. Because virtual
machine 112 may directly access the I/O configuration space
of local machine 202, the local shadow of /O space infor-
mation may provide device driver 212 with a transparent
illusion that one of remote devices 116, 118 is locally
installed on local machine 202.

VMM 104 may also configure memory 206 to support a
runtime [/O passthru for remote devices 116, 118. When
virtual machine 112 issues [/O operations to virtual device
114, VMM 104 may trap the [/O operations from execution
on local machine 202. After trapping the I/O operations,
VMM 104 may forward the /O operations to stub driver 110
running on the remote machine. The stub driver 110 may
then execute the I/O operations on a respective one of
remote devices 116, 118 and return the result to VMM 104.

25

30

40

45

6

VMM 104 may cause the result to be stored in an I/O space
in memory 206. For an I/O read, the results fetched from
remote device 116 or 118 may be stored in memory 206 or
may be fed directly into virtual machine 112.

VMM 104 may configure memory 206 to support various
DMA operations to remote access of remote devices 116,
118. The herein disclosed DMA operations contribute to
enabling computing continuum 200 to overcome /O
resource sharing challenges associated with traditional
approaches to device sharing between a local machine and
a remote machine.

In a single machine environment, a DMA operation may
involve a DMA buffer for data movement between a
memory and a device associated with the DMA buffer. In
computing continuum 200, local machine 202 may have a
DMA buffer 216 that may be allocated in memory 206.
Remote machine 208 may also have a DMA buffer 218
allocated in memory 220 of remote machine 208. According
to embodiments, the remote DMA buffer 218 may be
maintained by the stub driver 110 on remote machine 208.
This remote DMA buffer 218 may be visible to the device
and real DMA transactions may be performed using this
buffer. Local DMA buffer 216 may be allocated by device
driver 212 from the OS 210 and may be managed by VMM
104. Local DMA buffer 216 may be visible to the local SW
stack of local machine 202, so that all DMA transactions
appear to be performed using DMA buffer 216 from the
vantage point of virtual machine 112 and the components
hosted by virtual machine 112. Both local DMA buffer 216
and remote DMA buffer 218 may be regarded as a shadow
of'each other, and VMM 104 may work with stub driver 110
to keep the DMA buffers 216, 218 synchronized with each
other. As a result, device driver 212 operates as though all
DMA operations occur on a local device while the real
device is on the remote machine.

In embodiments, DMA buffer operations may be difficult
to handle because some DMA operations (such as those
associated with PCI or PCI-express agents) may be triggered
by device-specific commands which may be impractical to
be intercepted and decoded one by one. (PCI=Peripheral
Component Interconnect.) This may be different from other
cases (such as USB or SCSI agents) where all operations are
standard and can be decoded. (USB=Universal Serial Bus;
SCSI=Small Computer System Interface.) According to
various embodiments, to solve the issue of decoding indi-
vidual commands, a novel technique for synchronizing local
and remote DMA buffers 216, 218 is disclosed hereafter.

Before synchronizing DMA buffers 216, 218 in a runtime
phase of DMA operation, the buffers may be set up. VMM
104 may track all DMA buffers currently active for a device
by intercepting local OS 210 DMA mapping APIs. DMA
mapping APIs may provide the local DMA buffer 216
information, such as the starting address, the size, and the
DMA type (e.g., DMAREAD or DMA WRITE). VMM 104
may then report the DMA mapping to remote machine 208
so that stub driver 110 may allocate remote DMA buffer 218.
VMM 104 and stub driver 110 may collaboratively set up a
translation table 222.

Translation table 222 may include a mapping between the
remote and local DMA buffers 216, 218. Translation table
222 may be called an input/output memory management unit
(IOMMU) 222. IOMMU 222 may be implemented in pure
SW or may be accelerated by chipset firmware. Remote
DMA buffer 218 may then be synchronized with local DMA
buffer 216 so that DMA buffers 216, 218 may be initially
synchronized.

US 9,465,674 B2

7

During runtime phase, synchronizing DMA buffers 216,
218 may consume overhead processing cycles, so synchro-
nizing DMA buffers 216, 218 less frequently may be more
processing efficient. One approach may be to configure
VMM 104 and stub driver 110 to synchronize DMA buffers
216, 218 when VMM 104 intercepts a read/write access to
either one of DMA buffers 216, 218. This approach may
produce non-trivial runtime overhead. Another approach
may be to buffer local DMA buffer 216 reads/writes in
read/write caches, and synchronize the caches when an error
may otherwise occur. Embodiments of example approaches
are discussed below for the DMA read and DMA write,
respectively.

In embodiments, all writes to local DMA buffer 216 may
be synchronized to the remote machine. However, according
to one embodiment, instead of synchronizing remote DMA
buffer 218 to local DMA buffer 216 upon each memory write
to local DMA buffer 216, VMM 104 may buffer the memory
writes into a write cache. When one of a set of pre-
conditions occurs, VMM 104 may pause virtual machine
112 and send the write cache to stub driver 110. Stub driver
110 may populate remote DMA buffer 218 based on the
content of the write cache, then VMM 104 may resume
virtual machine 112. In embodiments, VMM 104 may
synchronize when:

a. VMM 104 detects that the local virtual machine 112 is
reading/writing from/to I/O registers or device [/O memory
of remote devices 116, 118 (which may potentially trigger a
DMA write transaction); or

b. VMM 104 detects that an interrupt from one or more of
remote devices 116, 118 arrives (which may indicate that
one of remote devices 116, 118 wants to read more data).

According to various embodiments, the duration of a
pause of virtual machine 112 caused by synchronizing write
caches may be reduced by synchronizing the DMA buffers
216 and 218 whenever possible (e.g. when there’s free
bandwidth on the communication channel 106), because
when virtual machine 112 is paused, it may be largely
probable that most of the write caches may have already
been synchronized to the remote DMA buffer 218. Addi-
tionally, synchronizing whenever it is possible to do so may
guarantee the correctness of a device’s behavior because
some devices use bits in the DMA memory to perform
synchronization (e.g., arbitration of buffer ownership) with
the OS.

In embodiments, contents of remote DMA buffer may be
fetched if virtual machine 112 reads the corresponding local
DMA buffer 216. According to one embodiment, instead of
fetching upon each memory read of local DMA buffer 216,
VMM 104 may fetch the whole DMA buffer 218 on a first
read to form a local read cache, so that subsequent reads of
DMA buffer 216 may be local without receiving updates
from remote machine 208. In embodiments, VMM 104 may
invalidate the cache to ensure that the local DMA buffer 216
is always up to date when:

a. VMM 104 detects that the local virtual machine 112 is
reading/writing from/to I/O registers or device [/O memory
of one of remote devices 116, 118 (which may potentially
trigger a DMA write transaction); or

b. VMM 104 detects that an interrupt of one of remote
devices 116, 118 arrives (which may indicate that the DMA
buffer 216 was rewritten so that the read cache may be
invalid).

According to various embodiments, the read cache may
be periodically invalidated because various bits of the DMA
buffer 216 may be used to perform synchronization between
the device and the OS (e.g., arbitration of buffer ownership).

10

15

20

25

30

35

40

45

50

55

60

65

8

The interval of invalidating read cache may be made con-
figurable so that improved or optimized performance can be
achieved for various devices.

Accordingly, memory 206 may be configured to facilitate
various types of collaboration between VMM 104 and stub
driver 110 by providing DMA buffer space for the purpose
of maintaining and updating a local DMA buffer 216.
Additionally, according to the techniques described above,
multiple DMA buffers may be utilized and synchronized to
enable VMM 104 and stub driver 110 to make remote
devices 116, 118 available to local machine 202.

Transitioning away from a discussion of DMA buffer
synchronization, VMM 104 and stub driver 110 may col-
laborate to enable virtual device 114 to emulate remote
devices 116, 118 by coordinating interrupt handling. When
one of remote devices 116, 118 triggers an interrupt, stub
driver 110 may forward the interrupt to VMM 104. In
response to receipt of the interrupt, VMM 104 may inject an
interrupt for virtual machine 112, so that device driver 212
may handle the interrupt.

More than one type of interrupt may be available, depend-
ing upon the type of hardware employed by computing
continuum 200. Whether the interrupt is message signaled
interrupts (MSI) or traditional INTx, the interrupts which
remote devices 116, 118 may raise are enumerated by
parsing a configuration space of the device, e.g., PCI con-
figuration space. To handle a traditional INTx, the interrupt
at remote machine 208 may be disabled until device driver
212 has handled the interrupt. To handle a MSI, because they
may behave like edge-triggered interrupts, a mirrored inter-
rupt may be injected to local virtual machine 112, without
disabling it. According to embodiments, because configu-
ration space of the remote devices 116, 118 has been
mirrored in virtual machine 112, OS 210 and device driver
212 may correctly bind the interrupt handler.

If one of remote devices 116, 118 raises an interrupt at
remote machine 208, VMM 104 may simulate the interrupt
in the local virtual machine 112. Then device driver 212 in
local virtual machine 112 may handle the device interrupt as
if the device were plugged in local machine 202.

The above disclosed continuums of FIG. 1 and FIG. 2
may be implemented in accordance with various embodi-
ments. For example, stub drive 110 may bind to a PCI device
such as a USB enhanced host controller interface host
controller (EHCI HC), which is a typical PCI device. In
other embodiments, other PCl-based, industry standard
architecture (ISA) bus-based or advanced microcontroller
bus architecture (AMBA) bus-based devices may be used to
implement stub driver 110.

FIG. 3 shows a flow diagram of an access method, on the
local machine side, according to embodiments.

At block 302, a virtual machine manager of the local
machine may perform hosting and managing a virtual
machine on the local machine.

At block 304, the virtual machine manager may perform
obtaining information about an I/O device on a remote
machine (e.g. the machine to be described with reference to
FIG. 4) from a stub driver on the remote device.

At block 306, the virtual machine manager may perform
instantiating a virtual I/O device on the local machine.

At block 308, the virtual machine manager may perform
collaborating with the stub driver to effectuate a real access
to the I/O device for an access to the virtual /O device.

FIG. 4 shows a flow diagram of an access method, on the
remote machine side, according to embodiments.

At block 402, a stub driver of the remote machine may
bind the stub driver to an I/O device of the remote machine.

US 9,465,674 B2

9

At block 404, the stub driver may detect additional I/O
devices coupled to the I/O device.

At block 406, the stub driver may obtain configuration
information for the additional I/O devices.

At block 408, the stub driver may collaborate with a
virtual machine manager of a second machine (e.g., local
machine of FIG. 3) to effectuate a real access to an 1/O
device by the second machine.

FIG. 5 illustrates a computing device 500 in accordance
with one implementation of the invention. Computing
device 500 can be any one of local and remote machines
102, 202, 108, and 208 described in FIGS. 1-2. Computing
device 500 may house a board 502. Board 502 may include
a number of components, including but not limited to a
processor 504 (having one or more processor cores) and at
least one communication chip 506. Processor 504 may be
physically and electrically coupled to the board 502. Pro-
cessor 504 may execute instructions configured to perform
some or all of the operations of the method of FIG. 3 or
execute the instructions configured to perform some or all of
the operations of the method of FIG. 4, according to various
embodiments. In some implementations at least one com-
munication chip 506 may also be physically and electrically
coupled to the board 502. In further implementations, the
communication chip 506 may be part of the processor 504.

Depending on its applications, computing device 500 may
include other components that may or may not be physically
and electrically coupled to the board 502. These other
components may include, but are not limited to, volatile
memory (e.g., DRAM 508), non-volatile memory (e.g.,
ROM 510), and persistent storage 528 (such as flash
memory or disk storage). Volatile memory 508, non-volatile
memory 510 and persistent storage 528 may be employed to
store the working and persistent copies of the instructions to
be executed by processor 504 to enable computing device
500 to perform the method operations of FIGS. 3 and/or 4.
These other components may further include a graphics
processor 512, a digital signal processor (not shown), a
crypto processor (not shown), a chipset 514, an antenna 516,
a display (not shown), a touchscreen display 518, a touch-
screen controller 520, a battery 522, an audio codec (not
shown), a video codec (not shown), a power amplifier
(AMP) 524, a global positioning system (GPS) device 526,
an accelerometer (not shown), a gyroscope (not shown), a
speaker 530, a camera 532, and a mass storage device (not
shown) (such as hard disk drive, compact disk (CD), digital
versatile disk (DVD), and so forth). Any of these compo-
nents may be one of a resource device 116 or an 1/O device
118, according to various embodiments.

Communication chip 506 enables wireless communica-
tions for the transfer of data to and from the computing
device 500. The term “wireless” and its derivatives may be
used to describe circuits, devices, systems, methods, tech-
niques, communications channels, etc., that may communi-
cate data through the use of modulated electromagnetic
radiation through a non-solid medium. The term does not
imply that the associated devices do not contain any wires,
although in some embodiments they might not. Communi-
cation chip 506 may implement any of a number of wireless
standards or protocols, including but not limited to Wi-Fi
(IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE
802.20, long term evolution (LTE), evolution—data opti-
mized (Ev-DO), evolved high speed packet access (HSPA+),
high speed downlink packet access (HSDPA+), high speed
uplink packet access (HSUPA+), enhanced data rates for
GSM evolution (EDGE), global system for mobile (GSM),
general packet radio service (GPRS), code division multiple

10

15

20

25

30

35

40

45

50

55

60

65

10

access (CDMA), time division multiple access (TDMA),
digital enhanced cordless telecommunications (DECT), Blu-
etooth, derivatives thereof, as well as any other wireless
protocols that are designated as 3G, 4G, 5G, and beyond.
Computing device 500 may include a number of commu-
nication chips 506. For instance, a first communication chip
506 may be dedicated to shorter range wireless communi-
cations such as Wi-Fi and Bluetooth and a second commu-
nication chip 506 may be dedicated to longer range wireless
communications such as GPS, EDGE, GPRS, CDMA,
WiMAX, LTE, Ev-DO, and others. According to embodi-
ments, communication chip 506 may be I/O device 118 of
FIGS. 1-2.

Processor 504 of the computing device 500 includes an
integrated circuit die packaged within the processor 504. In
some implementations of the disclosure, the integrated cir-
cuit die of the processor includes one or more devices
operably configured according to embodiments of the dis-
closure. The term “processor” may refer to any device or
portion of a device that processes clectronic data from
registers and/or memory to transform that electronic data
into other electronic data that may be stored in registers
and/or memory.

Communication chip 506 also includes an integrated
circuit die packaged within the communication chip 506. In
accordance with another implementation of the disclosure,
the integrated circuit die of the communication chip includes
one or more devices, such as I/O devices 118, configured to
communicate with external devices and/or systems.

In further implementations, another component housed
within the computing device 500 may contain an integrated
circuit die that includes one or more devices, such as
processor cores, cache and one or more memory controllers.

In various implementations, the computing device 500
may be a laptop, a netbook, a notebook, an ultrabook, a
smartphone, a tablet, a personal digital assistant (PDA), an
ultra mobile PC, a mobile phone, a desktop computer, a
server, a printer, a scanner, a monitor, a set-top box, an
entertainment control unit, a digital camera, a portable music
player, or a digital video recorder. In further implementa-
tions, the computing device 500 may be any other electronic
device that processes data.

Specific features of any of the above described embodi-
ments may be fully or partially combined with one or more
other embodiments, either wholly or partially, to form new
embodiments of the disclosure.

Following are additional example embodiments of the
disclosure.

According to various example embodiments, a computer
readable medium may have a number of instructions con-
figured to enable a local machine, in response to execution
of the instructions by the local machine, to operate a virtual
machine manager to host and manage a virtual machine on
the local machine. The virtual machine may include a device
driver. The instructions may enable a local machine to obtain
information about a resource on a remote machine from a
stub driver on the remote machine. The resource on the
remote machine may be bound to the stub driver on the
remote machine. The instructions may enable the local
machine to instantiate a virtual resource on the local
machine corresponding to the resource on the remote
machine, and collaborate with the stub driver on the remote
machine to effectuate a real access to the resource on the
remote machine for an access to the virtual resource by the
device driver on behalf of a program on the local machine.

US 9,465,674 B2

11

In embodiments, the resource may include an 1/O device,
and obtaining information about the I/O device may include
obtaining configuration information about the I/O device
from the stub driver.

In embodiments, the virtual machine manager may create
on the local machine a shadow copy of an I/O address space
of the I/O device based on the obtained information, to
facilitate I/O address space-based access of the [/O device.

In embodiments, the virtual machine manager may
execute an initialization routine of the device driver on the
local machine to effectively initialize the /O device for
access, based at least in part on the shadow copy of the /O
address space.

In embodiments, the virtual machine manager may cap-
ture an I/O instruction issued by the virtual machine, trans-
mit the I/O instruction to the stub driver for operation on the
1/0 device to obtain an 1/O result, and receive the I/O result
from the stub driver.

In embodiments, the virtual machine manager may pause
the virtual machine after a capture of an I/O instruction of
the virtual machine.

In embodiments, the virtual machine manager may
receive, from the stub driver, an interrupt notification of the
1/O device.

In embodiments, the virtual machine manager may cause
the device driver to interrupt the virtual machine, in response
to receipt of the interrupt notification of the I/O device.

In embodiments, the virtual machine manager may inter-
rupt the virtual machine in a manner that enables the virtual
machine to handle the interrupt notification of the I/O device
as if the I/O device was directly connected to a local bus of
the local machine.

In embodiments, the virtual machine manager may trans-
mit a disable instruction to the stub driver to temporarily
disable interrupts on the remote machine, in response to
receipt of the interrupt notification of the I/O device.

In embodiments, the virtual machine manager may allo-
cate a local direct memory access (DMA) buffer on the local
machine, to facilitate DMA based access of the I/O device.

In embodiments, the virtual machine manager, as part of
facilitation of DMA based access of the I/O device, may
update the local DMA buffer with results of DMA based
access of the I/O device.

In embodiments, the virtual machine manager, as part of
facilitation of DMA based access of the I/O device, may
synchronize the local DMA buffer with a corresponding
DMA buffer of the remote machine.

In embodiments, the virtual machine manager may cache
write access operations on the local DMA buffer, and may
transmit the cached write access operations to the stub
driver, in response to either a DMA access associated data
transfer between the virtual machine and the I/O device or
receipt of a DMA access associated interrupt notification of
the I/O device from the stub driver.

In embodiments, the virtual machine manager may pause
operation of the virtual machine after the cached write
access operations on the DMA buffer are transmitted, and
may resume operation of the virtual machine in response to
receipt of a synchronize notification from the stub driver that
indicates that the corresponding DMA buffer on the remote
machine has been synchronized with the local DMA buffer.

In embodiments, the virtual machine manager may syn-
chronize the local DMA buffer with information from a
corresponding DMA buffer on the remote machine in
response to detection of a local read operation on the DMA
buffer read from the virtual machine.

10

15

20

25

30

35

40

45

50

55

60

65

12

In embodiments, the virtual machine manager may syn-
chronize the local DMA buffer with all content stored in the
corresponding DMA buffer on the remote machine.

In embodiments, the stub driver may include a peripheral
component interconnect (PCI) card driver.

In embodiments, the resource may include one or more of
a graphical processing unit, a display port, a display, a user
interface, a communications device, an audio device, or a
storage device.

According to various example embodiments, a method for
a local machine to access a resource on a remote machine
may include hosting, by a virtual machine manager of the
local machine, a virtual machine having a device driver, and
obtaining, by the virtual machine manager, from a stub
driver on the remote machine, information about the
resource on the remote machine, wherein the resource on the
remote machine is bound to the stub driver on the remote
machine. The method may also include instantiating, by the
virtual machine manager, a virtual resource on the local
machine corresponding to the resource on the remote
machine, and collaborating, by the virtual machine manager,
with the stub driver on the remote machine to effectuate a
real access to the resource on the remote machine for an
access to the virtual resource by the device driver on behalf
of a program on the local machine.

In embodiments, the resource may be an /O device, and
obtaining information about the /O device may include
obtaining, by the virtual machine manager, from the stub
driver, information about I/O address space of the 1/O
device, and creating on the local machine, by the virtual
machine manager, a shadow copy of the /O address space
of'the I/O device to facilitate 1/O address space based access
of the /O device by the device driver.

In embodiments, the method may include executing, by
the virtual machine manager, an initialization routine of the
device driver on the local machine to effectively initialize
the I/O device for access based on the shadow copy of the
1/O address space.

In embodiments, the resource may include an [/O device,
and the method may include capturing, by the virtual
machine manager, an 1/O instruction issued by the virtual
machine, transmitting, by the virtual machine manager, the
1/O instruction to the stub driver to operate on the 1/O device
to obtain an 1/O result, and receiving, by the virtual machine
manager, the I/O result from the stub driver.

In embodiments, the method may include pausing, by the
virtual machine manager, the virtual machine after capturing
the I/O instruction.

In embodiments, the resource may include an [/O device,
and wherein the method may include receiving, by the
virtual machine manager, from the stub driver, an interrupt
notification of the I/O device.

In embodiments, the resource may include an [/O device,
and collaborating may include allocating, by the virtual
machine manager, a local direct memory access (DMA)
buffer on the local machine to facilitate DMA access based
1/O by the device driver, and synchronizing, by the virtual
machine manager, in cooperation with the stub driver, the
local DMA buffer with a corresponding DMA buffer of the
remote machine.

In embodiments, collaborating may include caching, by
the virtual machine manager, write access operations of the
virtual machine on the local DMA buffer, and transmitting,
by the virtual machine manager, the cached write access
operations in response to either transferring DMA access
associated data between the virtual machine and the I/O

US 9,465,674 B2

13

device or receiving from the stub driver a DMA access
associated interrupt notification of the /O device.
In embodiments, collaborating may include pausing, by
the virtual machine manager, operation of the virtual
machine when the cached write access operations are trans-
mitted, and resuming, by the virtual machine manager,
operation of the virtual machine in response to receipt of a
synchronize notification from the stub driver that indicates
that the corresponding DMA buffer of the remote machine
has been synchronized with the local DMA buffer.
In embodiments, synchronizing may include copying all
buffered data of the corresponding DMA buffer of the
remote machine, in response to detecting an attempt by the
virtual machine to read the local DMA buffer.
According to various embodiments, a system may include
a local computing machine. The local computing system
may include system memory, a communication interface,
and one or more processors configured to perform any
method of the disclosed embodiments.
According to various example embodiments, a computer
readable medium may have a number of instructions con-
figured to enable a machine having a number of resources,
in response to execution of the instructions by the machine,
to provide a stub driver to facilitate access of the resources
by another machine, the stub driver to bind the stub driver
to a first of the resources, detect one or more additional
resource coupled to the first resource, obtain configuration
information for the one or more additional resources, and
collaborate with a virtual machine manager of the machine
to effectuate a real access to one or more of the resources by
a program on the other machine.
In embodiments, the resource may include an 1/O device,
and collaborating may include collaboration to facilitate I/O
address space based access of the 1/O device.
In embodiments, the resource may include an 1/O device,
and collaborating may include collaboration to facilitate
direct memory access (DMA) based access of the 1/O
device.
In embodiments, the resource may include an 1/O device,
and collaborating may include routing of interrupts of the
1/O device to the other machine.
In embodiments, the /O device may be a peripheral
component interconnect (PCI) enabled device or a PCI-
express enabled device.
What is claimed is:
1. A non-transitory computer readable medium having a
plurality of instructions stored thereon, wherein the instruc-
tions, when executed by a local machine, provide the local
machine with a virtual machine manager to:
host and manage a virtual machine on the local machine,
wherein the virtual machine includes a device driver;

obtain information about a resource on a remote machine
from a stub driver on the remote machine, wherein the
resource on the remote machine is bound to the stub
driver on the remote machine;

instantiate a virtual resource on the local machine corre-

sponding to the resource on the remote machine; and
collaborate with the stub driver on the remote machine to
effectuate a real access to the resource on the remote
machine upon an access to the virtual resource by the
device driver on behalf of a program on the local
machine, wherein to collaborate includes to allocate a
local direct memory access (DMA) buffer on the local
machine to facilitate DMA based input/output (1/0) by
the device driver and to synchronize, in cooperation
with the stub driver, the local DMA buffer with a
corresponding DMA buffer of the remote machine.

10

15

20

25

30

35

40

45

50

65

14

2. The non-transitory computer readable medium of claim
1, wherein the resource comprises an [/O device, and
wherein obtain information about the 1/O device comprises
obtain configuration information about the /O device from
the stub driver.
3. The non-transitory computer readable medium of claim
2, wherein the virtual machine manager is further to create
on the local machine a shadow copy of an I/O address space
of the I/O device based on the obtained information, to
facilitate I/O address space-based access of the /O device.
4. The non-transitory computer readable medium of claim
3, wherein the virtual machine manager is further to execute
an initialization routine of the device driver on the local
machine to effectively initialize the /O device for access,
based at least in part on the shadow copy of the /O address
space.
5. The non-transitory computer readable medium of claim
2, wherein the virtual machine manager is further to:
capture an [/O instruction issued by the virtual machine;
transmit the I/O instruction to the stub driver for operation
on the I/O device to obtain an I/O result; and
receive the I/O result from the stub driver.
6. The non-transitory computer readable medium of claim
2, wherein the virtual machine manager is further to:
receive, from the stub driver, an interrupt notification of
the I/O device.
7. The non-transitory computer readable medium of claim
6, wherein the virtual machine manager is further to cause
the device driver to interrupt the virtual machine, in response
to receipt of the interrupt notification of the I/O device.
8. The non-transitory computer readable medium of claim
7, wherein the virtual machine manager interrupts the virtual
machine in a manner that enables the virtual machine to
handle the interrupt notification of the I/O device as if the
1/0 device was directly connected to a local bus of the local
machine.
9. The non-transitory computer readable medium of claim
7, wherein the virtual machine manager is further to transmit
a disable instruction to the stub driver to temporarily disable
interrupts on the remote machine, in response to receipt of
the interrupt notification of the I/O device.
10. The non-transitory computer readable medium of
claim 1, wherein the virtual machine manager is further to:
cache write access operations on the local DMA buffer;
and
transmit the cached write access operations to the stub
driver, in response to either a DMA associated data
transfer between the virtual machine and an I/O device
or receipt of a DMA associated interrupt notification of
the I/O device from the stub driver.
11. The non-transitory computer readable medium of
claim 10, wherein the virtual machine manager is further to:
pause operation of the virtual machine after the cached
write access operations on the DMA buffer are trans-
mitted; and
resume operation of the virtual machine in response to
receipt of a synchronize notification from the stub
driver that indicates that the corresponding DMA buffer
on the remote machine has been synchronized with the
local DMA buffer.
12. A method for a local machine to access a resource on
a remote machine, comprising:
hosting, by a virtual machine manager of the local
machine, a virtual machine having a device driver;
obtaining, by the virtual machine manager, from a stub
driver on the remote machine, information about the

US 9,465,674 B2

15

resource on the remote machine, wherein the resource
on the remote machine is bound to the stub driver on
the remote machine;

instantiating, by the virtual machine manager, a virtual

resource on the local machine corresponding to the
resource on the remote machine;

allocating, by the virtual machine manager, a local direct

memory access (DMA) buffer on the local machine to
facilitate DMA based input/output (I/O) the device
driver; and

synchronizing, by the virtual machine manager, in coop-

eration with the stub driver, the local DMA buffer with
a corresponding DMA buffer of the remote machine to
effectuate a real access to the resource on the remote
machine upon an access to the virtual resource by the
device driver on behalf of a program on the local
machine.

13. The method of claim 12, wherein the resource is an
1/0 device, and wherein obtaining information about the [/O
device includes:

obtaining, by the virtual machine manager, from the stub

driver, information about I/O address space of the /O
device; and

creating on the local machine, by the virtual machine

manager, a shadow copy of the I/O address space of the
1/O device to facilitate I/O address space based access
of the /O device by the device driver.

14. The method of claim 13, further comprising:

executing, by the virtual machine manager, an initializa-

tion routine of the device driver on the local machine to
effectively initialize the 1/O device for access based on
the shadow copy of the I/O address space.

15. The method of claim 12, wherein the resource com-
prises an /O device, and wherein the method further
includes:

capturing, by the virtual machine manager, an I/O instruc-

tion issued by the virtual machine;

transmitting, by the virtual machine manager, the I/O

instruction to the stub driver to operate on the 1/O
device to obtain an I/O result; and

receiving, by the virtual machine manager, the 1/O result

from the stub driver.

16. The method of claim 12, wherein the resource com-
prises an /O device, and wherein the method further
includes

receiving, by the virtual machine manager, from the stub

driver, an interrupt notification of the I/O device.

20

25

30

35

40

45

16
17. The method of claim 12, further including:
caching, by the virtual machine manager, write access
operations of the virtual machine on the local DMA
buffer; and

transmitting, by the virtual machine manager, the cached

write access operations in response to either transfer-
ring DMA associated data between the virtual machine
and an I/O device or receiving from the stub driver a
DMA associated interrupt notification of the I1/O
device.

18. The method of claim 17, wherein collaborating further
comprises:

pausing, by the virtual machine manager, operation of the

virtual machine when the cached write access opera-
tions are transmitted; and

resuming, by the virtual machine manager, operation of

the virtual machine in response to receipt of a synchro-
nize notification from the stub driver that indicates that
the corresponding DMA buffer of the remote machine
has been synchronized with the local DMA buffer.

19. The method of claim 12, wherein synchronizing
includes copying all buffered data of the corresponding
DMA buffer of the remote machine, in response to detecting
an attempt by the virtual machine to read the local DMA
buffer.

20. A non-transitory computer readable medium having a
plurality of instructions stored thereon, wherein the instruc-
tions, when executed, are to provide a stub driver on a first
machine having a plurality of resources to facilitate access
to the resources by a second machine, the stub driver to:

bind the stub driver to a first of the resources;

detect one or more additional resource coupled to the first

resource;
obtain configuration information for the one or more
additional resources; allocate a local direct memory
access (DMA) buffer on the local machine to facilitate
DMA based input/output (I/O) by the device driver; and

synchronize, in cooperation with the stub driver, the local
DMA buffer with a corresponding DMA buffer of the
remote machine to effectuate a real access to one or
more of the plurality of resources of the first machine
by a program on the second machine.

21. The non-transitory computer readable medium of
claim 20, wherein the one or more of the plurality of
resources comprises an I/O device, and wherein to synchro-
nize in cooperation with the stub driver is to facilitate I/O
address space based access of the /O device.

#* #* #* #* #*

